A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method
نویسندگان
چکیده
Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) May 2013 2. REPORT TYPE Technical Paper 3. DATES COVERED (From To) May 2013-June 2013 4. TITLE AND SUBTITLE A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method 5a. CONTRACT NUMBER In-House
منابع مشابه
A Two-Dimensional Fourth-Order CESE Method for the Euler Equations on Triangular Unstructured Meshes
Previously, Chang reported a new high-order Conservation Element Solution Element (CESE) method for solving nonlinear, scalar, hyperbolic partial differential equations in one dimensional space. Bilyeu et al. have extended Chang’s scheme for solving a onedimensional, coupled equations with an arbitrary order of accuracy. In the present paper, the one-dimensional, high-order CESE method is exten...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملSimulation of Store Separation using Low-cost CFD with Dynamic Meshing
The simulation of the store separation using the automatic coupling of dynamic equations with flow aerodynamics is addressed. The precision and cost (calculation time) were considered as comparators. The method used in the present research decreased the calculation cost while limiting the solution error within a specific and tolerable interval. The methods applied to model the aerodynamic force...
متن کاملTime-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method
Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are...
متن کامل